

Engineering Portfolio

Maxwell Willix

Project Objective: Use SolidWorks to create 3D models of a Keyence IM-RU1 coordinate measuring machine for work holdings to be prototyped.

Maxwell Willix | Modular Fairing for Road Bikes (Senior Design)

Project Objective: Design, build, and test a product that improves the aerodynamic performance of shallow section road bike wheels that can be easily installed and removed.

Project Objective: Design an automated deburring machine that increases efficiency and eliminates safety hazards associated with manual operation.

Maxwell Willix | Introductory Revit Course (Voluntarily Enrolled)

Maxwell Willix | ANSYS Simulation of a Single Cylinder Engine Crank Shaft

Project Objective: Use ANSYS to perform fatigue, modal, harmonic, and transient analyses on a single-cylinder engine crankshaft, and demonstrated infinite fatigue life using Goodman criteria.

Project Objective: Design a two-level loading platform for a Roto-blast machine that includes a safety rail and an ergonomic workspace.

Project Objective: Design a fixture that maximizes the number of paint masks that can be held in a plastic bead media paint stripping cabinet.

Maxwell Willix | Quartz Clock Reverse Engineering Project

Project Objective: Reverse engineer a quartz clock by specifying product requirements, investigating materials and manufacturing processes of each part, creating a functional bill of materials, and creating CAD and mathematical models of the drive train.

Maxwell Willix | ENGR 253L (CAD I) AutoCAD Drawings

Maxwell Willix | Headlight Reverse Engineering Project

Project Objective: Reverse engineer a battery powered head light to learn how it operates by decomposing it into its parts, creating CAD models, and a functional bill of materials.

Part Number	Part Name	Quantity	Classification (Custom or Standard)	Material	Function of Part
1	Lens casing	1	Custom	Rubber	Protect and support the lens
2	Lens	1	Custom	ABS plastic	Protect the LEDs
3	LED casing	1	Custom	ABS plastic	Keep the LEDs in place
4	1/4 inch phillips head screw	4	standard	metal	Secure other parts in place
5	Battery Pack cover	1	Custom	ABS	Keep the battery pack in place to pass a charge
6	Battery Pack Cover washer	2	Custom	Rubber	Keep battery pack cover from snapping
7	Battery pack	1	Custom		Store the batteries and conduct the power
8	LED mount	1	Custom	ABS	Keep lights in place
9	Power button casing	1	Custom	ABS	Protects the switch and holds the button in place.
10	Power button	1	Custom	Rubber	Over the on switch for the LEDs, press to turn on
11	12 LEDs	1	Custom	ABS	Create light
12	Wire	3	Custom	Metal with a rubber coating	Conduct power from the switch to the LEDs
13	Switch	1	Custom	PCB	Allow power to go from batteries to the light
14	Philips head bolt	1	Standard	Metal	Connects LED mount to the hinge
15	Hex nut	1	Standard	Metal	Secure the bolt in place
16	Headlight frame	1	Custom	Plastic	Protects and contains the components of the LEDs
17	Hinge and Strap clip	1	Custom	Plastic	Allows motion on the headlight frame and connects the straps

Original Device

SolidWorks Model

Functional Bill of Materials

Maxwell Willix | Injection Molded Restaurant Pager Project

Project Objective: Design a restaurant pager that houses a given PCB board that makes use of screw bosses and adheres to injection molding design guidelines.

Isometric View

Exploded View

Sectional View

Screw Boss Sectional View

Maxwell Willix | Sand Casted Ring Stand Project

Project Objective: Design and Manufacture a display stand by 3D printing a pattern and using it to sandcast aluminum.

Pattern

Cope/Drag

Finished Project

Maxwell Willix | ENGR 254L (CAD 2) Vise Project

Maxwell Willix | Fly Fishing Fly-Tying Station (Independent Project)

Project Objective: Design and manufacture a desktop organizer for fly-tying supplies that also functions as a fly-tying workstation.

SolidWorks Model

Final Prototype

Maxwell Willix | Multi-Level Charcuterie Board (Independent Project)

 Project Objective: Design and build a charcuterie board that has multiple levels to display meats and cheeses in a more exciting manner than a flat board.

SolidWorks Model

Final Prototype